
D.M. Grabowska   BAPTS Spring 2017   03/03/2017

Understanding Chiral 
Gauge Theories using 

Extra Dimensions

Dorota M Grabowska 
UC Berkeley

Work done with David B. Kaplan: 
Phys. Rev. Lett. 116 (2016), no. 21 211602 

Phys. Rev. D 94, 114504



D.M. Grabowska   BAPTS Spring 2017   03/03/2017

Parity Violation
One of the great surprises of 20th century was discovery of parity 
violation: LH and RH fermions can carry different gauge charge!
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Chiral Gauge Theories

3

Extremely well-motivated

• Strong agreement between observations and predictions

• Ubiquitous in speculative models of BSM physics

On poor theoretical footing

• No (proven) nonperturbative regulator

• No all-orders proof for a perturbative regulator

We have seen exactly one chiral gauge theory: Standard Model
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Chiral Gauge Theories

3

Extremely well-motivated

• Strong agreement between observations and predictions

• Ubiquitous in speculative models of BSM physics

On poor theoretical footing

• No (proven) nonperturbative regulator

• No all-orders proof for a perturbative regulator

We have seen exactly one chiral gauge theory: Standard Model

Could nonperturbative regulator lead to unexpected 
phenomena or address some outstanding puzzles?
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Need nonperturbative definition of fermion path integral

• Vector theory: fermions in real representations of gauge group

• Chiral theory: fermions in complex representations

Fermion Path Integrals

44
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Need nonperturbative definition of fermion path integral

• Vector theory: fermions in real representations of gauge group

• Chiral theory: fermions in complex representations

Fermion Path Integrals

4

Δ(A) is really product of eigenvalues 

4

Witten:  ‘We often call the fermion path integral a “determinant” 
            or a “Pfaffian,” but this is a term of art.’

Fermion path 
integral
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The Problem

5

Need to find eigenvalues of fermion operator 

• Vector theory: 

• Chiral theory:

LH

RH

LH

RH
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The Problem

5

Need to find eigenvalues of fermion operator 

• Vector theory: 

• Chiral theory:

Ill-defined eigenvalue problem leads to phase ambiguity for 
product of the eigenvalues of chiral fermions

LH

RH

LH

RH
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A (Perturbative) Proposal

6

Proposal: Introduce neutral RH spectator fermions*

• Well defined eigenvalue problem 

• Overall phase of Δ(A) related to η-invariant* 

• Uncertain if amenable to lattice regularization

* Alvarez-Gaume et al, ’86, ’87
* Atiyah, Patodi & Singer, ’75, ’75, ’76
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A (Perturbative) Proposal

6

Proposal: Introduce neutral RH spectator fermions*

• Well defined eigenvalue problem 

• Overall phase of Δ(A) related to η-invariant* 

• Uncertain if amenable to lattice regularization

* Alvarez-Gaume et al, ’86, ’87
* Atiyah, Patodi & Singer, ’75, ’75, ’76

Charged LH 
Weyl Fermion

Neutral RH 
Weyl Fermion

{ Are there other reasonable pert. limits for Δ(A)? }
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Ex: Massless electrons in two dimensions

• Fermion charge does not change: U(1)V preserved

• Axial charge does change if Dirac sea infinite: U(1)A violated

7

Anomalies

Right Moving 

Left Moving

p

ω

Initial Ground State

Classical symmetries violated by quantum effects

7
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Left Moving Electric field 
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Ex: Massless electrons in two dimensions

• Fermion charge does not change: U(1)V preserved

• Axial charge does change if Dirac sea infinite: U(1)A violated

7

Anomalies

Right Moving 

Left Moving Electric field 
on, off

ω

Final Ground State

pp

ω

Initial Ground State

Classical symmetries violated by quantum effects

Anomalies require infinite number of degrees of freedom

7
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Need: Finite phase space to tame UV divergences

• Usually done by introducing mass scale

• Gauged chiral symmetries forbid mass scale

Need: Possibility of anomalous chiral symmetries

• Self-consistency requires cancellation of gauge anomalies

• Anomalies require infinite number of degrees of freedom

Regulating Chiral Gauge Theories

8
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Need: Finite phase space to tame UV divergences

• Usually done by introducing mass scale

• Gauged chiral symmetries forbid mass scale

Need: Possibility of anomalous chiral symmetries

• Self-consistency requires cancellation of gauge anomalies

• Anomalies require infinite number of degrees of freedom

Regulating Chiral Gauge Theories

8

Fundamental tension between taming UV behavior of chiral 
gauge theories and maintaining gauge invariance
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No-Go Theorem*

9

*Nielsen & Ninomiya, ‘81

No-Go Theorem: No lattice fermion operator can 
satisfy all  four conditions simultaneously: 

1. Periodic and analytic in momentum space

2. Reduces to Dirac operator in continuum limit

3. Invertible everywhere except at zero momentum

4. Anti-commutes with γ5
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No-Go Theorem: No lattice fermion operator can 
satisfy all  four conditions simultaneously: 

1. Periodic and analytic in momentum space

2. Reduces to Dirac operator in continuum limit

3. Invertible everywhere except at zero momentum

4. Anti-commutes with γ5

}
locality of Fourier 

transform

single massless 
Dirac in 

continuum

chiral symmetry 
preserved
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No-Go Theorem*

9

*Nielsen & Ninomiya, ‘81

Lattice regulated chiral fermions violate at least 
one condition 

No-Go Theorem: No lattice fermion operator can 
satisfy all  four conditions simultaneously: 

1. Periodic and analytic in momentum space

2. Reduces to Dirac operator in continuum limit

3. Invertible everywhere except at zero momentum

4. Anti-commutes with γ5

}
locality of Fourier 

transform

single massless 
Dirac in 

continuum

chiral symmetry 
preserved
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Requirements

Lattice regulated chiral gauge theories must have: 

• Global chiral symmetry with correct U(1)A anomaly

• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion
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• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion

Some Previous Proposals

Project out mirrors; 
construct measure

{Lüscher}

Gauge fix; flow to 
correct continuum limit

{Golterman, Shamir}

Give mass to mirrors 
{Golterman, Petcher, 

Smit, etc}
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Requirements

Lattice regulated chiral gauge theories must have: 

• Global chiral symmetry with correct U(1)A anomaly

• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion

Some Previous Proposals

Project out mirrors; 
construct measure

{Lüscher}

Gauge fix; flow to 
correct continuum limit

{Golterman, Shamir}

Give mass to mirrors 
{Golterman, Petcher, 

Smit, etc}

Our proposal is in a slightly different vein
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Global Chiral Symmetries

Domain Wall Fermions*

• Introduce extra (compact) 
dimension, s 

• Fermion mass depends on s

• Massless modes localized on 
mass defects

• Massive fermions delocalized into 
the bulk

extra dimension (s)

or
di

na
ry

 d
im

en
si

on
s

+Λ-Λ

fermion mass

*Kaplan, ‘92

RH 

➠

LH 

➠
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Callan-Harvey Mechanism*

U(1)A Anomaly

• Gauge fields independent of s

• Bulk fermions carrying charge 
between mass defects

• Boundary fermions see axial 
charge appearing/disappearing 

• Condensed matter physicists 
would call this a topological 
insulator

*Callan & Harvey, ’85 extra dimension (s)

+Λ-Λ

fermion mass

RH 

➠

LH 
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Callan-Harvey Mechanism*

U(1)A Anomaly

• Gauge fields independent of s

• Bulk fermions carrying charge 
between mass defects

• Boundary fermions see axial 
charge appearing/disappearing 

• Condensed matter physicists 
would call this a topological 
insulator

*Callan & Harvey, ’85

Anomaly: U(1)A explicitly violated

extra dimension (s)

+Λ-Λ

fermion mass

RH 

➠

LH 

➠

or
di

na
ry

 d
im

en
si

on
s

Chern 
Simons 
Current
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Requirements

Lattice regulated chiral gauge theories must have: 

• Global chiral symmetry with correct U(1)A anomaly

• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion

DONE!
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Fluffy Mirror Fermions*

Idea: Localize gauge field around defect via gradient flow

• Gauge field satisfies gradient flow equation in bulk

• RH fermions couple to physical DoF with have soft form factor

• Both LH and RH fermions couple identically to gauge DoF

*DMG & Kaplan ’15

Λ
LH RHRH

-Λ
s = 0 s = Ls = -L

BC:Flow Eq:
 

Vector Theory

14
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Fluffy Mirror Fermions*

Idea: Localize gauge field around defect via gradient flow

• Gauge field satisfies gradient flow equation in bulk

• RH fermions couple to physical DoF with have soft form factor

• Both LH and RH fermions couple identically to gauge DoF

*DMG & Kaplan ’15

Λ
LH RHRH

-Λ
s = 0 s = Ls = -L

BC:Flow Eq:

Integration variable 
in path integral

Chiral Theory?

14
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Gradient Flow*

Ex: Two-dimensional QED

• Gauge field decomposes into gauge 
and physical DoF

• Each obey own flow equation

• RH couple with soft form factors
*Used in LQCD 
(Luscher ’10 etc)

High momentum 
modes damped out

Gauge DoF 
unaffected
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• Gauge field decomposes into gauge 
and physical DoF

• Each obey own flow equation

• RH couple with soft form factors
*Used in LQCD 
(Luscher ’10 etc)

High momentum 
modes damped out

Gauge DoF 
unaffected s/L

ω(x,s)
ω(x,0)

λ(x,s)
λ(x,0)

0
0 1

1
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Gradient Flow*

Ex: Two-dimensional QED

• Gauge field decomposes into gauge 
and physical DoF

• Each obey own flow equation

• RH couple with soft form factors
*Used in LQCD 
(Luscher ’10 etc)

High momentum 
modes damped out

Gauge DoF 
unaffected

Allows mirrors 
to decouple

s/L

ω(x,s)
ω(x,0)

λ(x,s)
λ(x,0)

0
0 1

1
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Requirements

Lattice regulated chiral gauge theories must have: 

• Global chiral symmetry with correct U(1)A anomaly

• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion

DONE!
DONE?
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Callan-Harvey Mechanism Revisted

17

Bulk fermions do not decouple completely at low energy

• Generate Chern-Simons terms

• Same mechanism is responsible for U(1)A anomaly

• In 3 dimensions, the Chern Simons action is

Fermion Contribution

Pauli Villars Contribution
CS only depends on sign 

of domain wall mass 



D.M. Grabowska   BAPTS Spring 2017   03/03/2017

Callan-Harvey Mechanism Revisted

17

Bulk fermions do not decouple completely at low energy

• Generate Chern-Simons terms

• Same mechanism is responsible for U(1)A anomaly

• In 3 dimensions, the Chern Simons action is

Fermion Contribution

Pauli Villars Contribution
CS only depends on sign 

of domain wall mass 



D.M. Grabowska   BAPTS Spring 2017   03/03/2017

Chern-Simon Action

18

Ex: Two-dimensional QED

• Effective two point function is nonlocal

• When flow is turned off, Γ vanishes Determines speed of flow

Chern-Simons term is non-zero with flowed gauge fields

18
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Chern-Simon Action

18

Ex: Two-dimensional QED

• Effective two point function is nonlocal

• When flow is turned off, Γ vanishes Determines speed of flow

Effective 2d theory is nonlocal due to Chern-Simons operator

Chern-Simons term is non-zero with flowed gauge fields

∂μω ∂μλ

18
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Anomalies Cancellation

DWF with flowed gauge fields results in nonlocal theory

• Multiple fermion fields give prefactor to Chern-Simons action

• Theory is local if prefactor vanishes
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Fermion Chirality
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Anomalies Cancellation

DWF with flowed gauge fields results in nonlocal theory

• Multiple fermion fields give prefactor to Chern-Simons action

• Theory is local if prefactor vanishes

Chiral fermion representations that satisfy this criteria 
are gauge anomaly free representations in continuum

Fermion Chirality

Prefactor depends 
on dimension
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Requirements

Lattice regulated chiral gauge theories must have: 

• Global chiral symmetry with correct U(1)A anomaly

• Decoupled mirror fermions

• Road to failure for anomalous representations

Basic building block is Dirac fermion

DONE!
DONE?
DONE!

Are the mirror fermions truly decoupled???
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Proposal

Recall: Defining chiral gauge theories requires defining 
Δ(A) in an unambiguous way 
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Pauli Villars
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Proposal

Recall: Defining chiral gauge theories requires defining 
Δ(A) in an unambiguous way 

Product over 
species

21
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Proposal

Recall: Defining chiral gauge theories requires defining 
Δ(A) in an unambiguous way 

5d Dirac operator w/ flowed fields

21
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Proposal

Recall: Defining chiral gauge theories requires defining 
Δ(A) in an unambiguous way 

21
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Decoupling the Fluff

Proposal: Decouple mirror fermions in gauge-invariant 
manner using soft form factors

• The Good:  Theory can only be local for anomaly-free 
representations

• The Bad: Exponential form factors are problematic in 
Minkowski space

• The (Potentially) Ugly: Gradient flow does not damp out 
instanton configurations
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Here Be Dragons
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Decoupling Fluff: The Bad

24

Problem: Exponentially soft form factor violates unitarity 
under analytic continuation to Minkowski space

Solution: Take extra dimension to be infinite*

• Gradient flow acts like a projector operator

• Doing so results in the manifestly 2d or 4d overlap operator 
that is amenable to lattice simulations*

* DMG & Kaplan, ‘16
* Narayanan and Neuberger, ‘95
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Decoupling Fluff: The Bad

24

Problem: Exponentially soft form factor violates unitarity 
under analytic continuation to Minkowski space

Solution: Take extra dimension to be infinite*

• Gradient flow acts like a projector operator

• Doing so results in the manifestly 2d or 4d overlap operator 
that is amenable to lattice simulations*

* DMG & Kaplan, ‘16
* Narayanan and Neuberger, ‘95

Field LH 
Fermion Sees

Field RH 
Fermion Sees
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Decoupling Fluff: The (Potentially) Ugly

25

Continuum flow equation has multiple attractive fixed 
points, A*

• Gauge Degree of Freedom to maintain gauge invariance

• Topological configurations like instantons

• May result in non-extensive contributions to the action

Mirrors couple to topology if flow equation is continuous

What are the ramifications of these couplings?
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Decoupling Fluff: The (Potentially) Ugly

26

If mirror fermions do not decouple, they are physical 
states and not just regularization artifacts

• Strong CP problem: massless mirrors make θ unphysical

• Similarly nonstandard interactions with gravity (Ricci flow)
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LH fermion’s 
kinetic term
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kinetic term
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Decoupling Fluff: The (Potentially) Ugly

26

If mirror fermions do not decouple, they are physical 
states and not just regularization artifacts

• Strong CP problem: massless mirrors make θ unphysical

• Similarly nonstandard interactions with gravity (Ricci flow)

LH fermion’s 
kinetic term

RH fermion 
kinetic term

Fundamentally different continuum limit than one would 
expect from perturbative chiral gauge theories
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Decoupling Fluff: The Good

27

“Road to failure” for anomalous theories is based on 
non-locality

• Extra dim. theory is gauge invariant for all representations

• Bulk fermions do not completely decouple at low energy 
scales, resulting in (nonlocal) Cher-Simons current

Question 1: Does the theory correctly reproduce 
fermion number violating processes? 

Question 2: Can this setup be used as a toolkit for the 
behavior of nonlocal quantum field theories?
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Summary

28

New proposal combines domain wall fermions with 
gradient flow

• Extra dimension allows for naturally light fermions

• Gradient flow decouples mirrors with soft form factors

• Road to failure for anomalous representations is non-locality

Chiral gauge theories are extremely well-motived 
but on poor theoretical footing
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Summary

28

New proposal combines domain wall fermions with 
gradient flow

• Extra dimension allows for naturally light fermions

• Gradient flow decouples mirrors with soft form factors

• Road to failure for anomalous representations is non-locality

Chiral gauge theories are extremely well-motived 
but on poor theoretical footing

Many questions, both formal and phenomenological, remain


